If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+14x-24=0
a = 6; b = 14; c = -24;
Δ = b2-4ac
Δ = 142-4·6·(-24)
Δ = 772
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{772}=\sqrt{4*193}=\sqrt{4}*\sqrt{193}=2\sqrt{193}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{193}}{2*6}=\frac{-14-2\sqrt{193}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{193}}{2*6}=\frac{-14+2\sqrt{193}}{12} $
| 2w=4w-34 | | 12v=17v-40 | | 4c–6=7c–12 | | y+40=5y | | 7c–12=4c–6 | | 7c–12°=4c–6° | | 4t=8t-88 | | a+10=35 | | 4y+2y-18=72 | | 3(x+8)-x=2(5-x)+6 | | 11/2+3n=4/5n+12 | | 4v=v+45 | | 4m/6=8/24 | | 23=8u-7+2u | | 5x+1/2=3/2 | | p+23+p+45=11p-13 | | 125+24a+7=180 | | 7m=m+10 | | 125+15x+5=180 | | √5x=500 | | 3x+5=-5x-13 | | p+56=9p | | 10x+45=15x+5 | | x+20+2x-24=x+50 | | u+u-15=u+34 | | 36=y4+14 | | 4x+2+5=−x+5 | | w+46=3w | | y-50+y=y+35 | | 85+w-27=180 | | t+9+t=t+47 | | 4x+2=7x+13 |